Third International Conference CONSOLFOOD2020

Advances in Solar Thermal Food Processing

22-23-24 January 2020

INSTITUTE OF ENGINEERING; UNIVERSITY OF ALGARVE; CAMPUS DA PENHA; FARO-PORTUGAL

MODELING AND DEVELOPMENT OF A SOLAR POWERED DATES DRYER

Part 1 : Modeling and Experimental Analysis of the Solar Heat Collector

Talal Al-Shukaili Sultan Qaboos University Muscat, Sultanate of Oman

Outline

- Dates in Oman
- Drying Dates, traditional and instrumented platforms

- Drawbacks of current drying platforms
- Solar energy potentials of Oman
- Rationale
- Geometry of prototype solar heat collector
- Experimental setup
- Modeling & simulation method
- Results
- Conclusion & future work

Sultanate of Oman

- Geographical location : southeastern coast of the Arabian Peninsula in Western Asia
- Area: 309, 500 km²
- Capital : Muscat
- **Population:** 4,829,473
- Weather: very hot in summer and pleasant in winter

Figure 1. Map of Oman (Britannica.com)

Dates in Oman

- Date fruits are considered as the primary agricultural crop in Oman as it comprises **80%** of all fruit crops and around **50%** of the total agricultural area (Anon, 2016).
- **345,000 tons** is the annual production of dates in Oman.
- Date fruits considered one of the **most nourishing** natural foods as it consists of **70% carbohydrates (mostly sugars) and 15 to 30 % water content** (depend on the variety and on the maturity stage of the fruit).
- The flesh of dates contains sugar (60 to 65 %), fiber (2.5%), protein (2%), fat, minerals, and pectin substances (each less than 2%).
- Date fruits are good source for **calcium, iron and potassium** (Zaid & de Wet, 2002).

(Source: flicker.com)

(Source: timesofoman.com)

Drying

(Source: flicker.com)

(Source: timesofoman.com)

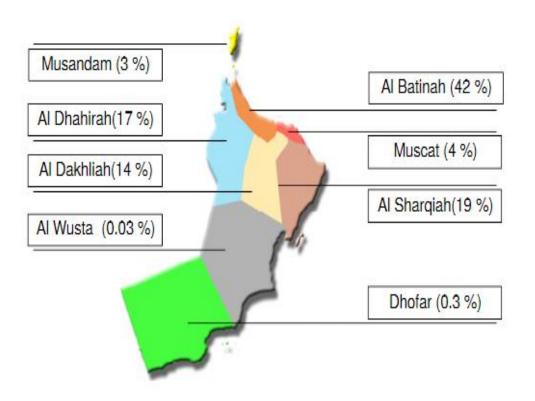
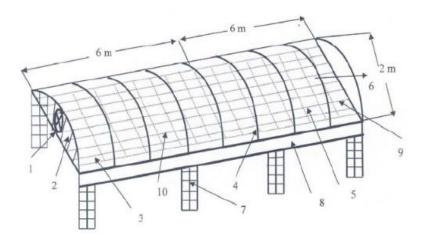


Figure 2. Regional distribution and percentage (from a total number of 7,795,786) of date palm trees in each region of the Sultanate of Oman.

Drying Dates: Open Sun Drying

Figure 3. Traditional sun drying using simple platforms


Open Sun Drying: Drawbacks

- Dates can get spoiled by weather conditions.
- Quality of the product can be reduced by the attack of animals, birds and insects.
- Poor dates quality (physical& nutritional).
- Poor hygiene.

Only 2.5 to 3.5 % is exported to global markets*

(*Mustayen et al. 2014).

Instrumented Solar dryers

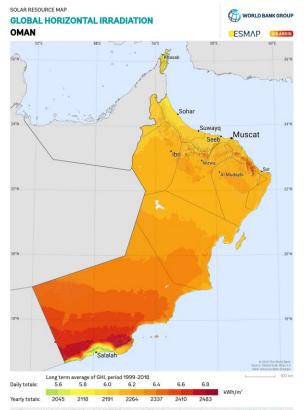
Figure 5 solar tunnel dryer Basunia et al., (2010),

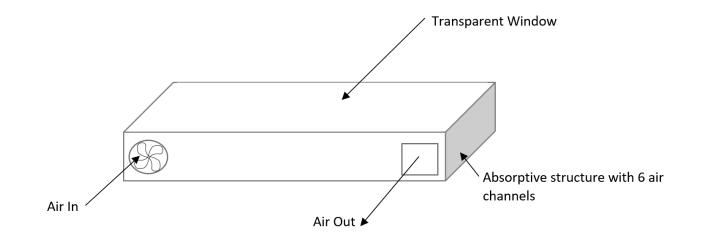
Figure 6 Forced convective solar dryer Manaa et al (2013)

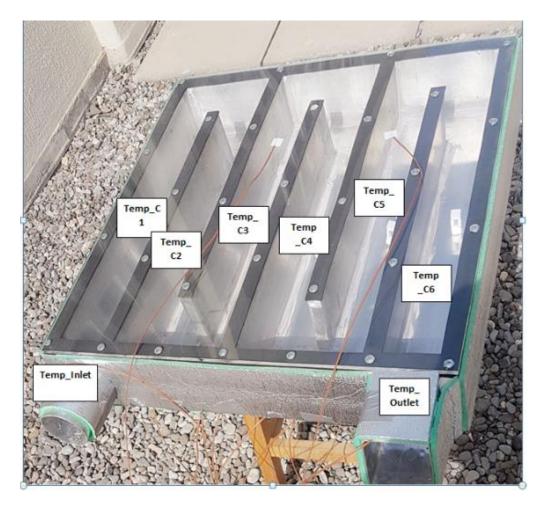
7

Solar Energy Potentials of Oman

- Oman has great potential for solar energy usages.
- Oman receives a daily 5.197 kWh/m² of solar energy radiation. (1897 kWh/m²/year)

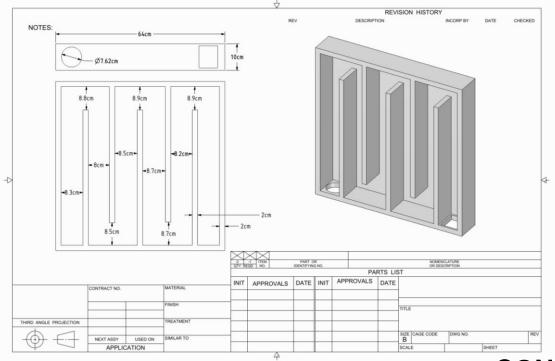


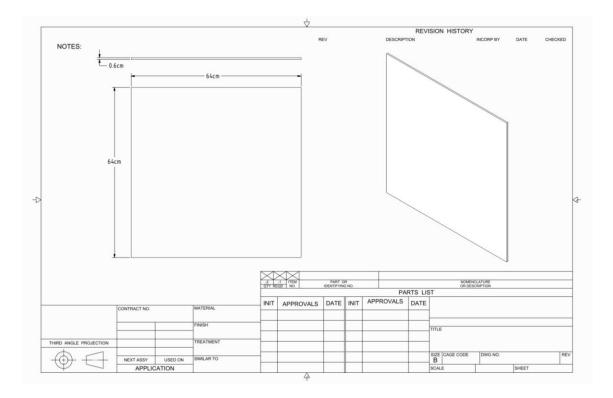

Figure 4. Global Horizontal irradiation (Source: solargis.com, 2019) CONSOLFOOD2020


Rationale

- Greenhouse tunnel dryer (due to highest drying rate) and open sun drying (due to direct exposure to high temperature) had higher microstructural changes (Seerangurayar et al., 2019).
- Forced convective solar dryers could be improved in terms of size and technology to become more efficient and user friendly.
- Connecting remote villages and small farms in Oman to electrical grid is expensive and economically not feasible as these villages and farms are too far from the grid (Al Hatmi &Tan, 2013).
- Off-grid diesel-fueled generators are prohibitively expensive and unreliable because of the fuel high cost as well they need to be frequently maintained.

Geometry of the solar heat collector


Overall Design

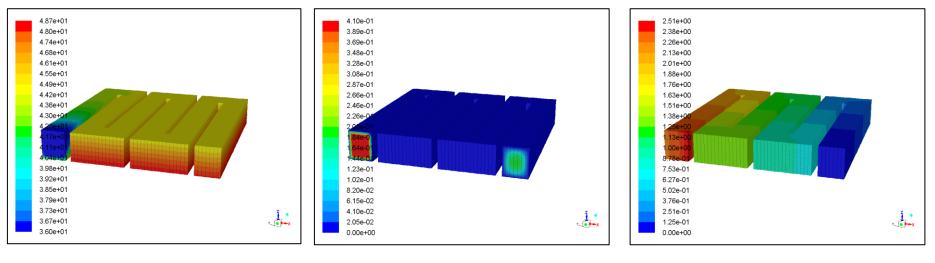

Geometry of the Solar Heat Collector

Dimensions : Absorptive surface

Dimensions: Transparent window

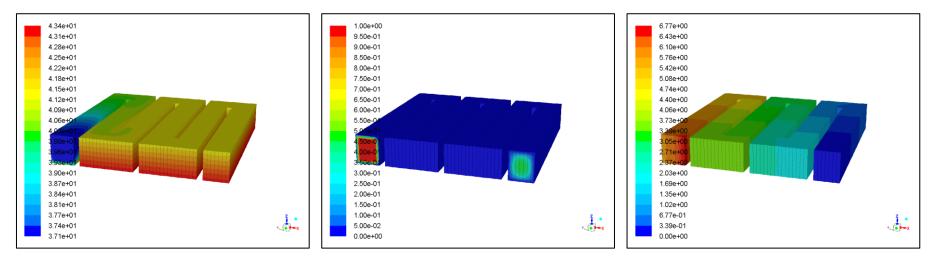
Experimental Setup

- Thermocouples in all 6 channels, transparent window, absorptive plate + inlet and outlet vents.
- Data logger.
- Weather station that measures:
 - Solar irradiance
 - Ambient air temperature
 - Relative humidity
 - Wind speed
- Photovoltaic panel to power the whole system.
- Exhaust fan with controllable speed.


CFD Numerical Modeling Method

Modeling & Simulation Results

Model 1: Low Velocity (V_{in}= 0.40 m/s)

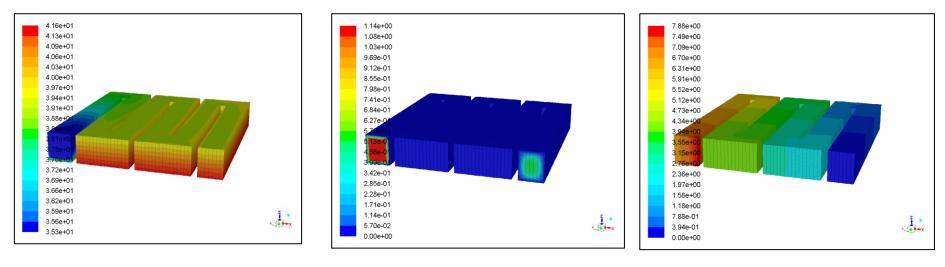


Temp (°C)

Velocity (m/s)

Pressure (pa)

Model 2: Medium Velocity (V_{in}= 0.65 m/s)

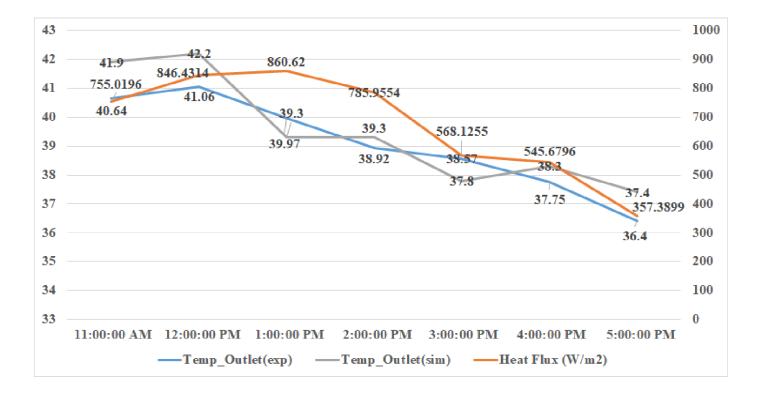


Temp (°C)

Velocity (m/s)

Pressure (pa)

Model 3: High Velocity (V_{in} = 1.00 m/s)



Temp (°C)

Velocity (m/s)

Pressure (pa)

Experimental Vs. Simulated Temp_Outlet

Conclusion

• Air inlet velocity Vs. Temperature difference (Outlet-Inlet), as air velocity increases, the difference decreases and vice versa, true for model and experiment.

 Good conformation between values of outlet temperature measured experimentally & predicted by the simulation model.

Future Work

- Blacking of the absorptive surface.
- Addition of a solar tracking system to increase solar heat collection during the day.
- More experimental testing and modeling for better optimization.
- Develop the drying chamber , and testing drying of dates to develop the drying kinetics.
- Use of advanced electronics and microcontrollers to automate the drying process.
- Seek for commercialization potentials and distribution to local village farmers.

Thank You

Questions ?

