Third International Conference CONSOLFOOD2020 Advances in Solar Thermal Food Processing

22-23-24 January 2020

INSTITUTE OF ENGINEERING; UNIVERSITY OF ALGARVE; CAMPUS DA PENHA; FARO-PORTUGAL

PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER

Link

- <u>Antonio Lecuona Neumann (lecuona@ing.uc3m.es</u>)
- Eleonora Improta (Master student)
- Sonia López-Larroque (Master student)
- Alfonso Daniel Vega-Palenzuela (Master student)

Grupo ITEA, Universidad Carlos III de Madrid Leganés; España

Contents

✤ INTRODUCTION

DESIGN AND IMPLEMENTATION

PRELIMINARY TESTING CAMPAIGN

✤ THEORY OF THE CAN TES COLLECTOR

✤ TESTING CAMPAIGN

CONCLUSIONS

Contents

***** INTRODUCTION

DESIGN AND IMPLEMENTATION

PRELIMINARY TESTING CAMPAIGN

THEORY OF THE CAN TES COLLECTOR

TESTING CAMPAIGN

CONCLUSIONS AND FURTHER WORK

INTRODUCTION Food solar drying

- According to FAO, 30% of agricultural crops are lost worldwide. Reasons:
 - Cropping season is short.
 - Lack of modern transport and/or cold storage.
 - Lack of knowledge
- In-situ drying is a good preserving method (less weight, not energy consuming ...) but,
 - Needs much heat to evaporate water \rightarrow same problems as cooking.
 - The product can be smoked, reducing quality and potentially toxic
- Solar drying is an option improving open-air drying

INTRODUCTION Food solar drying

Advantages of solar drying over open air drying \rightarrow

- Less space required.
- Faster drying.
- Protects load against: rain, dust and insects as it is enclosed.

Principles of operation and types or dryers:

- Direct: The sun heats the load directly
- Indirect:
 - Heats air to increase its moisture capacity (SAHC).
 - This air heats and dries the load.
 - Air is discarded.

INTRODUCTION Conventional food solar drying

- Process of indirect solar drying during the day
 - Air is heated in a SAHC reducing its relative moisture.
 - Hot air contacts the food heating it < 70 °C.
 - Superficial humidity evaporates cooling the food.
 - Moisture is evacuated by the flowing air (convection).
 - Humidity migrates from the inside to the food surface.
 - The food reduces in weight and size.
- During off-sun hours.
 - ☺ Temperature decreases and air moisture increases.
 - ℬ Mold can grow.
 - $\ensuremath{{\otimes}}$ Condensation is possible on the dryer surfaces.
 - © Internal homogenization of humidity contents.

INTRODUCTION Objectives

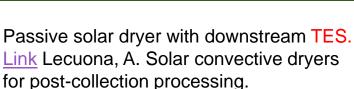
- Develop a passive Solar Air Heater Collector (SAHC) of the cabinet type
 - Does not need electricity, even no PV as it presents high cost, breakdown and thieving risk and difficult repairing.
 - Incorporating Thermal Energy Storage (TES) to:
 - Limit day maximum temperature
 - Continue drying during the night and avoid spoilage.
 - Low cost.
 - Components transportable to remote locations.
 - Local construction with common tools.
- Characterize its performances.

uc3m Universidad Carlos III de Madrid

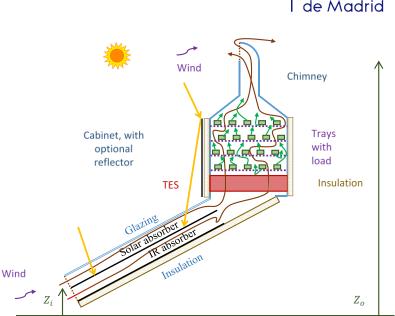
Contents * INTRODUCTION

*** DESIGN AND IMPLEMENTATION**

PRELIMINARY TESTING CAMPAIGN


***** THEORY OF THE CAN TES COLLECTOR

TESTING CAMPAIGN


CONCLUSIONS AND FURTHER WORK

PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER DESIGN AND IMPLEMENTATION Main issues. No TES dryer Conventional cabinet type passive solar dryer:

- Flat plate solar collector.
- Tilting allows natural draft as $\rho_o < \rho_i$.
- Chimney can increase natural draft $Z_o > Z_i$.
- TES would be highly convenient.
- Parallel air flow with two absorbers:
 - Higher efficiency
 - Avoids insulation melting

CONSOLFOOD2020

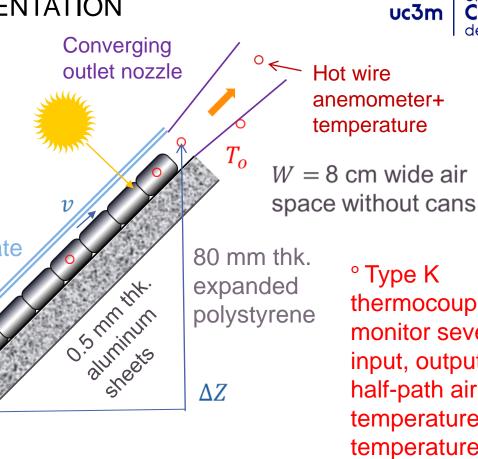
uc3m

Universidad

DESIGN AND IMPLEMENTATION

Main issues

- The low temperatures for drying calls for Thermal Energy Storage (TES):
- Low cost TES is provided by water.
- Water storage is a problem because of: corrosion, vapor pressure and cost of the tank.
- Solution: Soft drinks cans filled with non-caloric tea (99.9% water, non-carbonated):
 - Worldwide available.
 - Low cost 20 c€/ea. in Spain (cold tea).
 - Easily transportable (valid for emergencies).
 - Durable (in-house tested up to 80 °C).
 - Can absorb the sun rays when painted black.
 - High surface to volume ratio.



PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER **DESIGN AND IMPLEMENTATION** Prototype layout Converging

- 33 cm³e capacity. • 66 mmØ.
 - 116 mm length.
 - 14 g aluminum
 - Painted dull black $\alpha = \epsilon = 0.95$

10 mm thk. alveolar Polycarbonate cover

Anti-insects wire screen, inlet

CONSOLFOOD2020

° Type K thermocouples monitor several input, output and half-path air temperature + can temperatures

Universidad

Carlos III de Madrid

PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER DESIGN AND IMPLEMENTATION Some figures

- W = 1 m; $L = 2 \text{ m} \rightarrow 2 \text{ m}^2$ aperture surface.
- 14×17 = 238 cans→50 € →78 liter →312 kJ/K.
- With 30 K overheat they can evaporate (dry) 4 kg of water overnight.
- Central depression was caused by back insulation melting when using empty cans in a preliminary study.
- Surface in contact with air: 2.9 m² upper side, and 2.9 m² lower side.
- Turbulence enhancement at the can union points
- Constructed in aluminum, it can be constructed in hardboard or plywood on site.
- Testing in UC3M Campus, Leganés, Madrid, Spain.

DESIGN AND IMPLEMENTATION Instrumentation

- TSI and PCE handheld hot wire anemometers in the center of a 120×120 mm outlet collection section:
 - Converging nozzle to reduce boundary layer thickness.
 - It introduced some heat losses.
- 8 channel PICOLOG/TC-08 A/D with USB to computer.
- Several handheld thermocouple displays.
- MACSOLAR handheld piranometer.
- 40 deg. fixed tilting angle + azimuth sun tracking.
- Located at UC3M Campus in Leganés, South of Madrid, Spain.
- The small temperature differences require a careful thermocouple calibration

PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER DESIGN AND IMPLEMENTATION Previous experimental studies

Empty cans tests to determine h_a

Low cost pre-heating for cloudy days

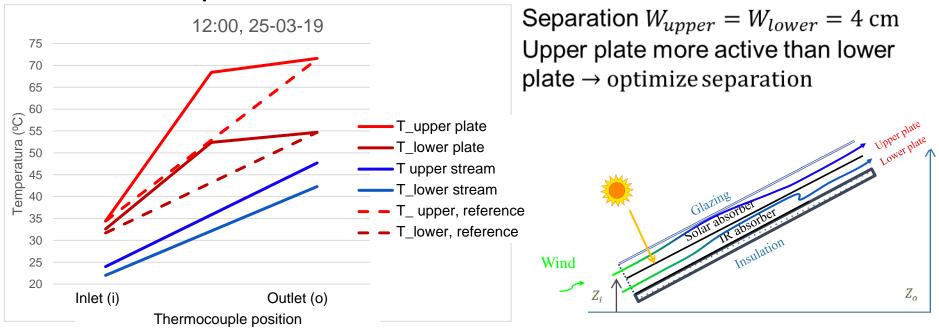
CONTENTS * INTRODUCTION

DESIGN AND IMPLEMENTATION

PRELIMINARY TESTING CAMPAIGN

***** THEORY OF THE CAN TES COLLECTOR

Universidad


de Madrid

uc3m

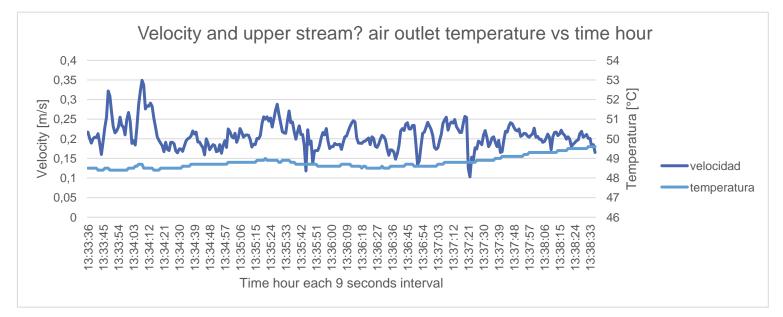
TESTING CAMPAIGN

CONCLUSIONS AND FURTHER WORK

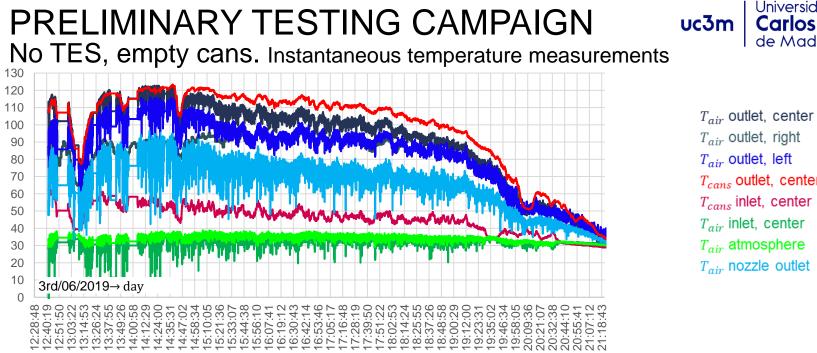
PRELIMINARY TESTING CAMPAIGN Parallel plates. No TES. Axial temperature profile

Universidad

Carlos III de Madrid


uc3m

Inhomogeneity in outlet stream flows were detected, also instabilities


PRELIMINARY TESTING CAMPAIGN Parallel plates. No TES.

Instantaneous measurements of outlet air temperature and velocity

• Low velocity and high wind sensitivity.

 T_{air} outlet, right T_{air} outlet, left T_{cans} outlet, center T_{cans} inlet, center T_{air} inlet, center T_{air} atmosphere T_{air} nozzle outlet

Universidad

Carlos II de Madrid

- Cold gusts perturbate the measurements.
- Temperature differences between the air temperatures at right, center, and left plate outlets and nozzle exit (possible heat losses or external air contamination).
- Cans temperature differences between plate inlet and outlet.
- Fast cooling after sunset, at 21 h drying stops.

uc3m Universidad Carlos III de Madrid

Contents

✤ INTRODUCTION

DESIGN AND IMPLEMENTATION

PRELIMINARY TESTING CAMPAIGN

***** THEORY OF THE CAN TES COLLECTOR

TESTING CAMPAIGN

CONCLUSIONS AND FURTHER WORK

DESIGN AND IMPLEMENTATION Natural draft velocity & heat transfer

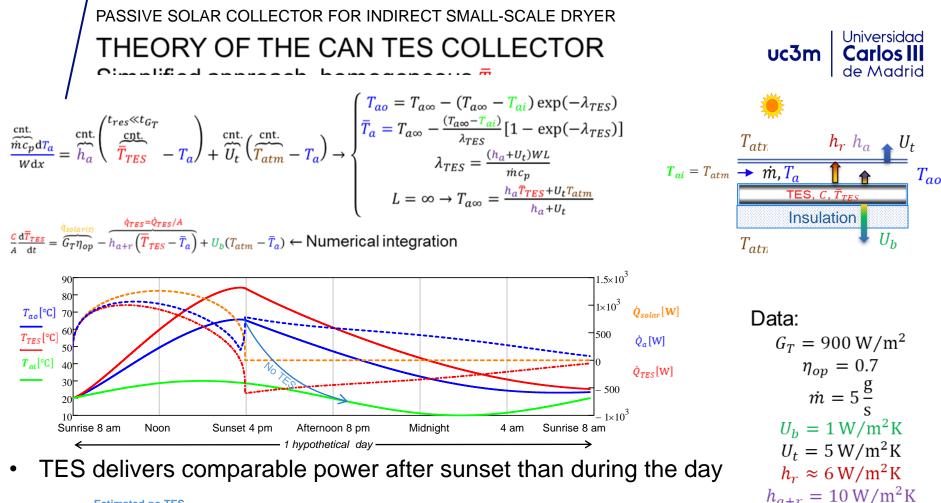
No outlet nozzle \overline{T}_{TE} , h_r , h_a , U_t

Lower flow neglected

$$T_{atm} = 30 \text{ °C; } T_{ao} = 65 \text{ °C}$$

$$\overline{T}_{TES} = \frac{T_{cans,i} + T_{cans,o}}{2} = 85 \text{ °C}$$

$$\widetilde{\rho} = \frac{\rho_i + \rho_o}{2} = 1.046 \frac{\text{kg}}{\text{m}^3}; b = \frac{\widetilde{\rho}}{\rho_{atm}} = 0.885$$


$$v_g = \sqrt{g\Delta Z} = 4.1 \text{ m/s}$$

$$D_h = 3.5 \text{ cm}; K = \frac{\Delta p_t}{(\rho v^2)/2} = 30$$

$$Re_{D_h} = 502; Ra_{D_h} = 9.2 \times 10^4$$

$$Ra_{D_h} \frac{D_h}{L} = 1.6 \times 10^3 \rightarrow \text{Forced laminar regime, rough absorber: } h_{a+r} \gtrsim 10 \frac{\text{W}}{\frac{\text{m}^2 \text{ K}}{\text{Fron.}}}$$

$$CONSOLFOOD202020$$

Estimated no TES cooling

uc3m Universidad Carlos III de Madrid

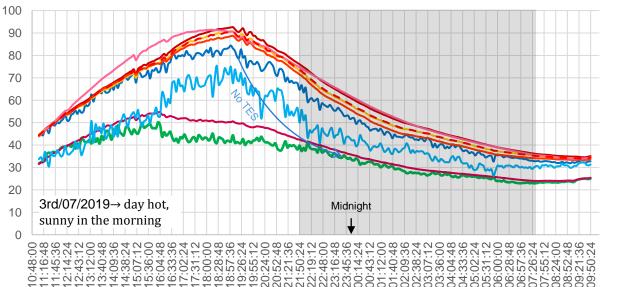
Contents

INTRODUCTION

DESIGN AND IMPLEMENTATION

PRELIMINARY TESTING CAMPAIGN

***** THEORY OF THE CAN TES COLLECTOR


TESTING CAMPAIGN

CONCLUSIONS AND FURTHER WORK

TESTING CAMPAIGN

Instantaneous measurements (smoothed) can TES collector

 T_{air} outlet, center T_{cans} outlet, right T_{cans} outlet, left T_{cans} outlet, center T_{cans} outlet, mean T_{cans} inlet, center T_{air} inlet, center T_{air} nozzle outlet

cooling

- More homogeneous cans outlet temperatures, and lower, owing to TES.
- Lower T_{air} outlet, center owing to TES.
- Persistence of an air temperature drop in the nozzle outlet (heat losses?, air back flow?, calibration?).
- Small differences in T_{air} outlet, center and T_{cans} outlet, center suggests a high h_a .

*** DESIGN AND IMPLEMENTATION**

PRELIMINARY TESTING CAMPAIGN

*** THEORY OF THE CAN TES COLLECTOR**

Universidad

de Madrid

uc3m

TESTING CAMPAIGN

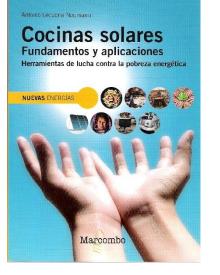
CONCLUSIONS AND FURTHER WORK

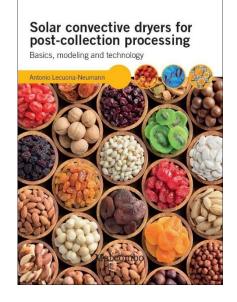
PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER CONCLUSIONS AND FURTHER WORK

- Indirect passive solar collectors seem possible and convenient for small dryers ...
 - ... if pressure losses are limited.
- TES using drinking cans seems successful and of large potential.
- For the can flat absorber and TES there is lack of knowledge on:
 - ✓ Sun collecting capacity.
 - ✓ Pressure loss.
 - ✓ Axial temperature profile
- High wind sensitivity.

PASSIVE SOLAR COLLECTOR FOR INDIRECT SMALL-SCALE DRYER
CONCLUSIONS AND FURTHER WORK

- Fully characterize the collector.
- Characterize the drying performances of sample foods in a cabinet.
- Test low end technologies, such as simple or dual PET film cover.
- Optimize its design (e.g., cross-section for air flow).
- Testing at field conditions, user experience.
- Determine operative life outdoors.


Thanks for your attention!


uc3m Universidad Carlos III de Madrid

On the front desk you have samples of these books. They are not for sale. A free pdf file can be obtained thanks to the fellowship of the thematic network CYTED/<u>AESCA</u> "ALMACENAMIENTO DE ENERGÍA SOLAR PARA COMUNIDADES AISLADAS"

CONSOLFOOD2020

Free pdf in <u>www.marcombo.info</u> password cocinas1 Free pdf in www.marcombo.info password SOLAR1

