Concentrated Solar Thermal Integration into Spice Roasting Industry: An Energy Analysis of an Indian Masala Manufacturing Facility

Tavish Fenbert, Northeastern University

Prof. Vishal Sardeshpande, Indian Institute of Technology Bombay

CONSOLFOOD 2018

23 Jan 2018

Introduction

- Tavish Fenbert: Mechanical Engineering student at Northeastern University in Boston, USA
- Prof. Vishal Sardeshpande, Indian Institute of Technology Bombay
- Centre for Technology Alternatives for Rural Areas

Research Goals

- Analyze the thermal steps in the masala production process
- Determine power consumption of these processes
- Develop strategies for integrating solar thermal technology

Indian Masalas

- Masala = spice mixture
 - Coriander
 - Cumin
 - Black pepper
 - Cinnamon
 - Chili powder
 - Onion
 - Ginger
 - Garlic
 - Turmeric
 - Salt
 - And others...

- Used daily by families around the country
- 6.22M metric tons of spices consumed every year

Purpose of Roasting Spices

- Changes in:
 - Aroma
 - Texture
 - Appearance
 - Reduce moisture
- Labor-intensive process
- Skilled labor required

Indian Power Subsidies

- Main forms of heat for masala industry are LPG and electricity
- Indian Gov. subsidizes electricity and LPG in many parts of the country
- 21.55M tons of LPG consumed in India during 2016-2017
 - Over half was imported
- Solar thermal can:
 - Reduce greenhouse gas emissions
 - Reduce energy spending of Indian Gov.

Indian Solar Availability

Masala Production Process

Solar Concentrators Overview

Method: Thermal processes

Boiling/Roasting in thermal oil vessel (elec.)

Roasting in pan (LPG)

Roasting in rotating vessel (LPG)

Method: Boiling/Roasting in electric thermal oil vessel

Method: LPG roasting

Energy Analysis Framework

Mass Balance: $m_{in} = m_{out}$

Energy Balance: $E_{in} = E_{out}$

$$Q_{elec} = m_{onion} * c_{onion} * \Delta T_{onion} + m_{oil} * c_{oil} * \Delta T_{oil} + m_{steam} * \Delta H_{vap} + Q_{loss}$$

Efficiency:
$$\eta_{LPG} = \frac{E_{required}}{E_{consumed}}$$

Energy Analysis: Boiling in electric thermal oil vessel

Particular	Unit	Thermal Oil Boiling
Batch mass	kg	700
Batch time	min	390
Vessel temperature	°C	130 to 150
Power required	kW	34.9

Energy Analysis: Roasting in electric thermal oil vessel

Temperature vs. Time for Coriander Roasting

Particular	Unit	Thermal Oil Roasting
Batch mass	kg	100
Batch time	min	80
Vessel temperature	°C	130 to 140
Power required	kW	4.8

Energy Use: LPG roasting

Particular	Unit	Pan	Rotating Vessel
Batch mass	kg	35	5
Batch time	min	28	7.4
LPG consumption rate	kg _{LPG} /hr	1.07	2.71
Power consumed	kW	13.7	34.7
Power required	kW	5.31	7.24
LPG heating efficiency, η_{LPG}	%	38.8	20.9

Solar Thermal Integration: Factors for consideration

- Temperature/power requirements
 - Time of day
- Solar space availability
- Backup power
- Plant layout
- Energy storage
- Cost

Solar Thermal Integration: Temp and power requirements

Process	Solar Technology Suggestions	Area Required (m²)	
Thermal oil boiling	PTC	117	
Thermal oil roasting	PTC	16	
LPG roasting in pan	Scheffler	~50	
LPG roasting in rotating vessel	Scheffler	~50	

Solar Thermal Integration: Potential Implementation Strategy

- Integrate a system of PTCs to heat the thermal oil for electric boiling/roasting processes
- Install Scheffler dishes to replace LPG for the pan and rotating vessel processes

- Some plant layout rearranging required
- PTCs are likely more practical than Scheffler

Parabolic Trough Concentrator (PTC)

Scheffler Dish

Conclusions

- Masala production industry is candidate for solar thermal integration
- Temperature range of processes is 140°C to 320°C

- Next steps:
 - Continue to gather data on energy use in masala production industry
 - Detailed economic analysis of solar thermal integration

Thank You!

Questions?