CONSOLFOOD 2018

International Conference on Advances in Solar Thermal Food Processing Universidade do Algarve. Faro. Portugal.

Simulation of a Solar Assisted CounterFlow Tunnel Dehydrator

23-Jan-2018 (Session O6)

Carrillo-Andrés, A., Sojo-Gordillo, J.M., Domínguez-Muñoz, F.,Cejudo-López, J.M. Grupo de Energética - Escuela de Ingenierías Industriales Universidad de Málaga - Spain acarrillo@uma.es ma UNIVERSIDAD DE MALDO CETIB-CARRILLO et. al. 23-Jan-2018 (Session O6)

1 / 36

About us

- GEUMA (Grupo de Energética de la Universidad de Málaga)
- Industrial Engineering School
- Modeling and simulation of thermal systems: HVAC, Buildings, Solar...

3

Tunnel and truck dehydrator

A private company located in Malaga has developed a first prototype of a dehydrator

Psychrometric chart

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 4 / 36

э

Tunnel and truck dehydrator

Truck loaded with sliced bananas

CF18-CARRILLO et. al

23-Jan-2018 (Session O6) 5 / 36

Objectives

The GEUMA is contacted to perform two tasks:

- Analyze the energy performance of the dryer prototype
- Evaluate the potential of using solar energy to reduce fuel consumption

Methodology:

- Experimental analysis of the prototype
- Thermal model of the dehydrator
- Thermal model of the solar system
- Simulation of the solar assisted dehydrator

Experimental analysis of the prototype

3

Global heat loss coefficient UA experimental determination

Empty tunnel 100 % recirculation

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6)

ion O6) 8 / 36

Global heat loss coefficient UA experimental determination Good Waffs

э

9 / 36

Reference test

Tray loaded with sliced bananas

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 10 / 36

・ロト ・聞き ・ モト ・ ヨト

æ

Reference test

Truck loaded with sliced bananas

CF18-CARRILLO et. al

23-Jan-2018 (Session O6)

11 / 36

Reference test parameters

Table 1. Parameters and measurements of the reference test. Only the truck #1 is loaded with sliced bananas.

Parameter	Value	Comment
Outside air temperature (°C) and relative	Around	Measured
humidity (%)	20°C 50 %	
Process air setpoint temperature (°C)	(60)	Measured
Process air mass flow rate (kg/h)	18906	Measured with digital vane probe
Exhaust air mass flow rate (kg/h)	945	Measured, it is 5% of the process flow rate
Global heat loss coefficient UA (W/C)	110	Determined from stationary heating tests
Heat recovery efficiency	0.8	Calculated from measurements
Fan motor electrical consumption (kW)	2.35	Measured
Wet product initial weight per truck (kg)	81.3	Measured
Dry product weight per truck (kg)	21.1	Estimated

- ∢ ⊢⊒ →

A B A A B A

э

Experimental reference test. Truck #1 weight measurement

(日) (周) (日) (日)

Experimental reference test. Truck #1 drying rate

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 14 / 36

< A

∃ ⊳

Experimental reference test normalized drying rate

Dry basis - Process air setpoint: 60 °C

CF18-CARRILLO et. al. 23-Jai

23-Jan-2018 (Session O6)

15 / 36

э

Experimental reference test normalized drying rate

Dry basis - Process air setpoint: 60 °C

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 16 / 36

∃ ⊳

Experimental reference test normalized drying rate

Dry basis - Process air setpoint: 50 °C

17 / 36

Experimental reference test. Energy balance

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 18 / 36

Sankey diagram (kWh)

Global Efficiency 27 %

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 19 / 36

Dehydrator thermal model

< - **1 1** →

글 🛌 😑

Why a dehydrator model?

Engineering Equation Solver EES

Reference test. Simulation vs Experimental

Good agreement

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 22 / 36

イロト イポト イヨト イヨト

æ

Dehydrator simulation - Full load - Process air temperature

Process air temperature at each truck inlet

Time (h)

Dehydrator simulation - Full load - Drying rate

Different drying rate

CF18-CARRILLO et. al. 23-.

23- Jan-2018 (Session O6)

24 / 36

Dehydrator simulation - Full load - Energy Balance

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 25 / 36

(日) (周) (日) (日)

Solar system model

イロト イヨト イヨト イヨト

3

Solar system model ACSOL (TRNSYS)

Solar system model

ACSOL (TRNSYS)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Solar system simulation - parameters

Parameter	Value	Comment
Weather file	Tenerife.EPW	EnergyPlus weather data [4]. Lat: 28.47 °N
Energy demand from drehydrator (kW)	Qcoil from Fig 7	A batch operation is assumed starting at 16h
		every day of the year and finishing at 9h next day.
Collector type	select. flat plate	Co=0.809 C1=4.030 W/m2K C2=0.007 W/m2K2
Slope and azimuth	30 ° facing south	Typical parameters
Collector area (m ²)	50 to 300	Aperture area
Solar tank volume to col. area ratio VA (1/m ²)	50-75-100	Typical range
Collectors arrangement	2 units in series	Typical arrangement
Solar field flow rate ratio (l/hm ²)	40	Nominal value for the selected collector.
Thermal losses in piping	Neglected	This is a preliminary analysis
Solar tank insulation	100 mm	k=0.04 W/mK
Maximum temperature allowed in tank (°C)	90	Typical value
Back-up heater position	Series with tank	An "ideal" back-up heater is assumed
Back-up heater setpoint temperature (°C)	80 or variable	Two different control strategies, see text
Heating coil nominal thermal power (kW)	70	Data from the simulation of the full load test Fig7
Heating coil air flow rate (kg/h)	18906	Actual air flow rate in the prototype
Heating coil water flow rate (kg/h)	4225	A balanced heat exchanger is assumed
Heating coil nominal air temperatures (°C)	47 inlet 60 outlet	60 °C is the process air setpoint, 47 °C from
		simulation of the full load scenario Fig.7.
Heating coil nominal water temp. (°C)	80 inlet 67 outlet	80 °C is the water temperature setpoint of the
		boiler of the prototype.
Heating coil exchange effectiveness	0.4	Calculated from assumptions above

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Solar system simulation - heater setpoint control

Solar system simulation - Performance

Figures of merit

Solar Fraction (SF) =
$$\frac{Q_{solar}}{Q_{load}} = 1 - \frac{Q_{aux}}{Q_{load}}$$

Net Collector Efficiency (NCE) = $\frac{Q_{solar}}{A_{col} \cdot H}$

3 × 4 3 ×

Solar system simulation - Performance

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6)

O6) 32 / 36

Conclusions

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 33 / 36

イロト イヨト イヨト イヨト

3

Conclusions

- An energy analysis of a experimental dryer prototype has been completed and thermal models of the dryer and of a solar water heating system have been developed.
- This is an energy intensive process: large collector area and storage volume are needed to get a significant solar fraction.
- VA ratios of about 75 l/m2 seems OK.
- The variable backup heater setpoint control has a positive impact on solar fraction.

Future work

- There are still many aspects that could be improved in the dehydrator design to increase its efficiency
- The drying kinetics modeling approach can be improved
- Other control strategies and operating conditions can be investigated

Thank you!

CF18-CARRILLO et. al. 23-Jan-2018 (Session O6) 36 / 36

イロト イヨト イヨト イヨト

3